Extremal and Probabilistic Graph Theory March 3

- **Definition.** F is called degenerate k-graph if $\pi(F) = 0$.
- **Definition.** A k-graph G is \mathcal{F} -free, if G has NO $F \in \mathcal{F}$ as a subgraph, where \mathcal{F} is a family of k-graphs.
- **Problem.** Characterize \mathcal{F} with $\pi(\mathcal{F}) = 0$.
- Kövari-Sós-Turán Theorem(k = 2). For $\forall t \ge s \ge 2$,

$$ex(n, K_{s,t}) \le \frac{1}{2}(t-1)^{\frac{1}{s}}n^{2-\frac{1}{s}} + \frac{1}{2}(s-1)n.$$

Proof. Let G be a $K_{s,t}$ -free *n*-vertex graph, we count T =the number of *s*-stars in G. On the one hand,

$$T = \sum_{v \in V(G)} \binom{d_v}{s},$$

On the other hand,

$$T \le \sum_{S \in \binom{V}{S}} (t-1) = (t-1)\binom{n}{s}.$$

Define

$$f(x) = \begin{cases} 0 & x < s; \\ \binom{x}{s} & x \ge s, \end{cases}$$

Then by The Jensen Inequality,

$$\frac{\sum_{v \in V(G)} {\binom{d_v}{s}}}{n} \ge {\binom{\sum d_v}{n}}{s} = {\binom{2e(G)}{n}}{s} \ge \frac{(d-s+1)^s}{s!},$$

where $d = \frac{2e(G)}{n}$. So

$$\frac{(d-s+1)^s}{s!} \le \frac{1}{n}(t-1)\binom{n}{s} \le \frac{1}{n}(t-1)\frac{n^s}{s!},$$

and

$$d \le (t-1)^{\frac{1}{s}} n^{1-\frac{1}{s}} + (s-1),$$

thus

$$e(G) \le \frac{1}{2}(t-1)^{\frac{1}{s}}n^{2-\frac{1}{s}} + \frac{1}{2}(s-1)n.$$

• **Remark.** For any bipartite G, there $\exists s$ and t such that $G \subseteq K_{s,t}$, but a G-free graph must be a $K_{s,t}$ -free graph, so $ex(n,G) \leq ex(n,K_{s,t}) \leq O(n^{2-\frac{1}{s}})$.

- Zarankiewicz Problem. Let Z(m, n, s, t) be the maximum value of e(G), where G is a bipartite graph with two parts of size m and n, and G is $K_{s,t}$ -free, then compare $ex(n, K_{s,t})$ and $Z(\frac{n}{2}, \frac{n}{2}, s, t)$.
- Exercise. $Z(\frac{n}{2}, \frac{n}{2}, s, t) \le ex(n, K_{s,t}) \le 2Z(\frac{n}{2}, \frac{n}{2}, s, t).$
- **Exercise.** Find an upper-bound of Z(n, n, s, t).
- Theorem 1. A family \mathcal{F} of graphs has $\pi(\mathcal{F}) = 0$ iff \mathcal{F} contains a bipartite graph. **Proof.** (\Leftarrow) Let $F \in \mathcal{F}$ be a bipartite graph, then there exists s such that $F \subseteq K_{s,s}$, a F-free graph necessarily is $K_{s,s}$ -free, so

$$ex(n,\mathcal{F}) \le ex(n,K_{s,s}) \le O(n^{2-\frac{1}{s}}),$$

then

$$\pi(\mathcal{F}) = 0.$$

 (\Rightarrow) Consider \mathcal{F} with $\pi(\mathcal{F}) = 0$. Suppose \mathcal{F} has NO bipartite graph, then $K_{\frac{n}{2},\frac{n}{2}}$ must be \mathcal{F} -free, so

$$ex(n, \mathcal{F}) \ge e(K_{\frac{n}{2}, \frac{n}{2}}) = \frac{n^2}{4}$$
$$\pi(\mathcal{F}) \ge \frac{1}{4},$$

which is a contradiction.

• Theorem 2. For $\forall t, k, \pi(K_{t:k}) = 0$. **Proof.** We prove it by induction on k. When $k = 2, \pi(K_{t,t}) = 0$ by K-S-T theorem. Performance Let E by the superstruction lamma:

Recall the supersaturation lemma: Let F be a k-graph, $\forall \varepsilon, \exists \delta > 0$, if G has at least $ex_k(n, F) + \varepsilon n^k$ edges, then G has at least $\delta n^{|V(F)|}$ copies of F.

Claim: Let *H* be a *k*-graph with (d-1)n + t edges, then *H* has a subgraph *J* with mindegree $\delta(J) \ge d$ and $|V(J)| \ge t^{\frac{1}{k}}$.

Proof of claim: We prove it by greedy algorithm. Let $H_0 = H$, suppose now we have subgraph H_i , if H_i has a vertex v_i with degree $\leq d-1$, then delete v_i , and let $H_{i+1} = H_i - v$, otherwise $\delta(H_i) \geq d$ and we stop. Let H_m be the subgraph it stops at, let $J = H_m$, then

$$e(J) = e(H) - \sum_{j=0}^{m-1} d_{H_i}(v_i) \ge e(H) - m(d-1) \ge t$$

Note that we already have $\delta(J) \ge d$, now $|V(J)|^k \ge e(J) \ge t$, so $|V(J)| \ge t^{\frac{1}{k}}$. Suppose that $\pi(K_{t:k-1}) = 0$, now we want to show $\pi(K_{t:k}) = 0$.

For $\forall \varepsilon > 0$ and *n* large enough, let *G* be a $K_{t:k}$ -free *n*-vertex *k*-graph, we want to show $e(G) \leq \varepsilon n^k$. Suppose for a contradiction that $e(G) \geq \varepsilon n^k$, by claim, *G* has a subgraph *J* such that

$$\begin{split} \delta(J) &\geq \frac{\varepsilon}{2} n^{k-1} \\ m &\triangleq |V(J)| \geq (\frac{\varepsilon}{2})^{\frac{1}{k}} n \end{split}$$

For $\forall v \in V(J)$, consider the link hypergraph J_v of v, then J_v is a (k-1)-graph with (m-1) vertices and at least $\frac{\varepsilon}{2}n^{k-1}$ edges. By $\pi(K_{t:k-1}) = 0$ and the supersaturation lemma, we know that

$$e(J_v) \geq \frac{\varepsilon}{2} n^{k-1} \geq \frac{\varepsilon}{2} m^{k-1}$$

$$\geq ex_{k-1}(m, K_{t:k-1}) + \frac{\varepsilon}{4} m^{k-1}.$$

So J_v has at least $\delta m^{(k-1)t}$ copies of $K_{t:k-1}$, $\forall v \in V(J)$, then $\#\{(v,K): K \text{ is a copy of } K_{t:(k-1)} \text{ in } J_v\} \geq \delta m^{1+(k-1)t}$. For a fix subset X of size (k-1)t we have N many wave to parti-

For a fix subset X of size (k-1)t, we have N many ways to partition X into k-1 parts of size t, where

$$N = \binom{(k-1)t}{t,\ldots,t} = \frac{[(k-1)t]!}{t!\ldots t!}.$$

By pigeonhole principle, there \exists a fixed $K = K_{t,(k-1)}$ such that there are at least $\frac{\delta m}{N}$ vertices belonging to $\{(v, K)\}$. Since $\frac{\delta m}{N} \gg t$, we can find v_1, \ldots, v_t such that $K \subseteq J_{v_i}$ for $\forall i$, thus $G[\{v_1, \ldots, v_t\} \cup V(K)]$ is a $K_{t:k} \subseteq G$, but G is $K_{t:k}$ -free, this is a contradiction. So for large n,

$$e(G) \le \varepsilon n^k,$$

 $e_k(n, K_{t:k}) \le \varepsilon n^k,$

then $\forall \varepsilon \geq 0$,

$$\pi(K_{t:k}) = \lim_{n \to \infty} \frac{e_k(n, K_{t:k})}{n^k} \le \varepsilon,$$

so $\pi(K_{t:k}) = 0$.